Transcranial Magnetic Stimulation for the Recovery of Gait and Balance in Stroke Patients

Post by Thomas Brown

What's the science?

The permanent brain damage which occurs following ischemic stroke makes functional recovery difficult. While physiotherapy can result in improved voluntary motor recovery, the improvement of balance and gait can be harder. Issues with balance pose a safety risk for stroke patients, who may be more likely to fall. Ultimately, problems with balance can mean reduced independence for patients. The cerebellum, a structure located at the back of the brain, is known to regulate movement, gait and balance. Deficits to the cerebellum often result in ataxia and widened gaits, making this area a prime target for functional recovery analysis. This week in JAMA Neurology Koch and colleagues demonstrate in a phase IIa clinical trial, an increase in gait and balance in hemiparetic stroke patients, up to three weeks after physiotherapy supplemented with transcranial magnetic stimulation of the cerebellum.

How did they do it?

A group of 36 hemiparetic (one side affected) stroke patients were randomly assigned to one of two age-matched groups; control or experimental. The experimental group was treated with intermittent theta-burst magnetic stimulation (TBS) of the cerebellar region ipsilateral (same side) to their motor issues. Intermittent TBS is a process by which bursts of magnetic energy are applied to the scalp over an area of interest. TBS was administered in conjunction with physiotherapy to the experimental group for three weeks. The control group still received physiotherapy, but received sham (fake) TBS. Patients were assessed using a wide range of balance and gait analysis tests to determine the degree of recovery. The authors relied primarily on the Berg Balance Scale, which is a series of 14 tests that determine the ability of an individual to balance without aid. Gait analysis was also performed, in which patients were asked to walk while a machine measured their gait (the space between each foot while walking). Neural activity was measured with electroencephalography while transcranial magnetic stimulation was applied simultaneously (EEG-TMS). This technique was used to measure neural activity changes in motor regions of the brain following activation of the motor cortex using a different TMS paradigm than the one used for treatment.

What did they find?

The authors found that after three weeks of the last treatment with either sham or cerebellar TBS, there was an average increase in the Berg Balance Scale score in those treated with TBS compared to controls. They also showed a reduction in gait width; a wide gait is often associated with the body’s attempt to compensate for problems with balance. This finding was supported by correlational analysis which found that a reduction is step width was associated with an improvement in Berg Balance Scale score. Interestingly, three weeks after treatment there was also an increase in neural activity in the motor (M1) region of the brain in the hemispheres affected by the stoke, in treated patients compared to controls. This area of the cortex is associated with the movement execution. Altogether these findings suggest that there were significant balance, gait and motor cortex activity improvements following treatment with TBS. Critically, no adverse effects were observed following treatment with TBS during the clinical trial.


What's the impact?

These findings suggest that theta-burst stimulation may be an effective way of supplementing physiotherapy in those suffering with balance and gait deficits following stroke. Theta-burst stimulation in conjunction with physiotherapy, was able to improve both balance and gait in stroke patients. Treatment with theta-burst stimulation could reduce the chance of falling and improve independence in stroke patients.


Koch et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery
in Patients With Hemiparetic Stroke. JAMA Neurology (2018).Access the original scientific publication here